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Parallel finite element simulation for orographic wind flow and
rainfall using GIS data
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SUMMARY

This paper presents a computational technique based on the finite element method for the orographic
wind flow and rainfall. The governing equations are the unsteady Navier—Stokes equations based on
Boussinesq approximation and the Kessler model for warm rain. The SUPG/PSPG method is employed
for the stabilization method. The automatic mesh generation method using GIS data is utilized to
develop an accurate geographic model. The present method is applied to the analysis of orographic
wind flow and rainfall past a semicircular hill and an actual mountain area. Copyright © 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

A number of natural disasters due to wind and rainfall occur annually in various parts of
the world. In order to estimate the extent of a disaster quantitatively, it is necessary to
estimate the wind flow and rainfall. Rainfall can be classified into two types: orographic
and convective rainfall. Orographic rainfall is caused by the clouds produced by ascending
wind flow due to the ups and downs of geological features. On the other hand, convec-
tive rainfall is caused by the clouds produced by ascending wind flow due to instability
of the air layers. Some physical models for these types of rainfall have been presented in
the past [1-5]. The models are classified in warm rain [1,2] and cold rain [3—5] whether
the model includes the effect of ice and snow. In the previous studies, Tateya et al. [2]
presented a numerical method based on the finite difference method for the analysis of
orographic rainfall for warm rain. The Kessler model [1] was used as the governing
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equation for warm rain and the potential flow theory was applied to the governing equations of
wind flow.

This paper presents a numerical method based on the parallel finite element method for
the analysis of orographic wind flow and rainfall in order to improve the applicability of the
numerical simulation method. The Kessler model is used as the governing equation for warm
rain. It represents the conservation equations of cloud and rainwater content. On the other hand,
the unsteady Navier—Stokes equation based on Boussinesq approximation is used for the gov-
erning equations of wind flow. The SUPG/PSPG (pressure-stabilizing/Petrov—Galerkin) [6, 7]
finite element method is used for solving wind flows. The SUPG (streamline-upwind/Petrov—
Galerkin) method is employed for solving the cloud and rainwater equations. The P1/P1
element (linear interpolation, both for velocity and pressure) is employed for the discretiza-
tion in space. The algebraic equations resulting from the finite element discretization are
solved using the element-by-element Bi-CGSTAB2 method. Computations are carried out on
a PC cluster [8]. The parallel implementation is based on domain decomposition method and
utilizes MPI libraries. In this type of computations, it is important that the finite element
mesh accurately represent the details of geographical features. Therefore, the automatic mesh
generation method using GIS data was also developed. The Delaunay method was employed
for generating the finite element mesh. In order to express the geographical features accu-
rately, the valley and mountain lines are represented as an edge of the finite element. The
present simulation method is applied to the analysis of orographic wind flow and rainfall past
a semicircular hill and an actual mountain area. The computed results are compared with the
experimental results. The effect of parallelization on the efficiency of the computation is also
examined.

2. BASIC EQUATION

Assuming that the air is viscous incompressible and Newtonian fluid, the wind flow can be
described by the Navier—Stokes equation based on Boussinesq approximation.
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where u; is the velocity, p is the pressure, py is the reference density, p is the gap to the
reference density, p. is the vertical gradient of the density, v is the viscosity of fluid and 6;;
is the Kronecker’s delta.

The Dirichlet and Neumann type boundary conditions are given as follows:

uj=¢; only 4)
1
n; (,00 POy + v (i) + “.i,i)) =h; on T (5)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:575-589



PARALLEL FINITE ELEMENT SIMULATION 577

R r:  rain water ‘
Rainfall intensity T T l
AC cC EP
Auto-conversion Collection Evaporation
of cloud of cloud of rain
A
cv \
Condensation .
of ‘water yapor —>| C: cloud water ‘

Figure 1. Kessler model.

The Kessler model for warm rain is used for the governing equation. Figure 1 shows
the schematic description of the rainfall mechanism according to the Kessler model [1]. The
governing equations represent the conservation laws for cloud and rain water content:

¢+uc;=—AC—-CC+EP+CV (6)
V+(U,+W5,3)I"’,:AC+CC—EP (7)

Here, ¢ is the cloud water content, » is the rainwater content in the air, u; is the wind
velocity, W is the falling speed of raindrops, AC, CC, EP and CV are the terms representing
auto-conversion of clouds, collection of clouds, evaporation of rain and condensation of water

vapour, respectively. The effect of vertical temperature distribution is included in the term of
condensation of water vapour. The cloud water content can be expressed as

c=q—0s (@)

where ¢ is the water vapour content and Qs is the saturated water vapour content in the air.
Therefore, ¢ =0 corresponds to a saturated air—water mixture.
The falling speed of raindrops is assumed to follow the relation:

W= —383N, ""®. 1% exp(kz/2) 9)

where N is the Marshall-Palmer constant(=10"m~*), k is the lapse rate of air density
(=10"*m™") and z is the altitude (m).
The rainfall intensity R (mm/h) is related to the rainwater content as

R=138N, "8 . /98 (10)
The Dirichlet type boundary condition corresponding to Equations (6) and (7) is given as

c=g, r=g only (11)

3. FINITE ELEMENT DISCRETIZATION

For the discretization in space, the stabilized finite element method based on the SUPG
(streamline upwind/Petrov—Galerkin) and PSPG (pressure stabilized/Petrov—Galerkin) method
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[6,7] is employed for the Navier—Stokes equation. The weak form of Equations (1) and (2)
can be expressed as follows:

1
/w,-(u',-+ujui,j)dﬂ— Wl"ifde
Q Po
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where w; and ¢ denote weighting functions. The first five integrals are Galerkin terms and
the series of element-level integral is the term due to SUPG/PSPG stabilization.

For the discretization of the density equation and the conservation equations of cloud water
content and rainwater content, the stabilized finite element method based on the SUPG method
is employed as follows:

Nel
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In Equations (13)—(15), the first integral is the Galerkin term. The series of element-level
integral is the SUPG term: u; is the wind velocity considering the fall speed of raindrops

(t; =u; + W), f. and f,. denote source term. The stabilization parameters Toypgi, Tpspe and
Tapge are defined as follows:

2 2 2 —12
e[+ ) ()]

Tpspg = Tsupgl (17)

(2 ()]

where At is the time increment and /4, is the element length.
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Using the P1/P1 element (linear interpolation both for velocity and pressure) for the dis-
cretization in space, the following finite element equations are obtained.

1
(M + M )ui; + (K(u;) + K () )u; — (C = Cy) Pt vSu; + (M + M) pﬁ 903 =0 (19)
0 0

1
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0 0

(M +Ms)p + (K(ur) + Ks(ui))p + (M + M) p-u;0i3 =0 (21)
(M +Ms)é + (K(u;) + Ks(ui))e — (M4 M) fo =0 (22)
(M +Ms)7 + (K(i;) + Ks(it;))r — (M +M;) £ =0 (23)

where, M, K, C and S are the coefficient matrices derived from each term of the weak form.
The subscripts ¢ and ¢ denote the SUPG and PSPG contributions, respectively.

The implicit scheme based on the Crank—Nicolson technique is employed for the tem-
poral discretization of Equations (19)—(23). To solve the simultaneous equation, the
element-by-element BiCGSTAB2 method is applied. The solution procedure is shown
in Figure 2.
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Figure 2. Flow chart.
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Table 1. Specifications of a component computer of the PC cluster.

PC cluster parallel computer (20PCs)

CPU Intel-Xeon

Clock cycle 3.06 GHz

Cache size 1 MB

Memory size 2GB

O.S. Red-Hat Linux 7.3
Network 1000Base-T

4. PARALLEL IMPLEMENTATION

A parallel computational scheme based on the domain decomposition method [9,10] was
developed in order to reduce the CPU time and computer storage required. A parallel imple-
mentation using the MPI libraries suitable for unstructured grid was designed for use on a
PC cluster [8]. The PC cluster consists of 20 nodes, each with an Intel-Xeon 3.06 GHz pro-
cessor and 2GB memory. The giga-bit ethernet (1000Base-T network) and a switching hub
are employed for the network environment. Table I shows the specifications of a component
computer of the PC cluster. The MPICH-SCore was used for MPI and PGI Fortran was used
for compiling the source codes. The automatic mesh decomposer, METIS [10], based on the
multilevel k-way partitioning scheme [9] was employed to minimize the amount of interpro-
cessor communication. For each sub-domain, the processor associated with that sub-domain
carries out computations independently.

The element-by-element Bi-CGSTAB2 method was employed to solve the finite element
equations. The parallel implementation results in a quick and efficient solution to the resulting
equation systems. The parallel implementation requires two types of communications. The
communication between neighbour processors is needed for the assembly of element level
vector and that among all the processors is needed for the calculation of residual norm.

5. MESH GENERATION USING GIS DATA

In order to generate a finite element mesh that accurately represents the details of geographical
features, an automatic mesh generation method using GIS data was developed. For the data of
land elevation, the digital elevation map issued by the Japanese geographical survey institute
was employed. The resolution of the map was 50m. The Arc View software [11, 12] was
used for the GIS system. Figure 3 shows the contour line for Miyake Island in Japan. In
order to obtain the information of ridge and valley lines, a finer grid which is called the grid
surface was prepared and the elevation of the grid points are interpolated by the 3rd order
spline function. The grid size was assumed to be 10 m. Applying the analysis of the direction
of stream using the grid surface, the ridge and valley lines can be obtained as in Figure 4.
The nodal points were generated on the ridge and valley lines at the constant interval. The
Delaunay method [13] was utilized for generating the finite element mesh. In order to express
the geographical features accurately, the ridge and valley lines were expressed as an edge
of the finite element. Figure 5 shows the surface mesh for Miyake Island. From this figure,
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Figure 4. Ridge and valley line for Miyake Island.
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Figure 5. Finite element mesh for ground surface.
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Figure 6. Boundary condition.

it can be seen that the finite element model expresses the geometrical features accurately.
The unstructured tetrahedral mesh was generated for the 3-D domain using the surface mesh
described above.

6. NUMERICAL EXAMPLES

The present method is applied to the wind flow past a semicircular hill [14]. The 2-D and
3-D analysis is performed to check the validity of the method. The computational domain and
boundary conditions are illustrated in Figure 6. The span length is assumed to be 44, where
h is the height of a semicircular hill. In this example, the non-dimensional equation system is
employed. The Reynolds number is assumed to be 2000. The computation is carried out using
different values of the degree of air-density stratification. The total number of elements and
nodes are 28,424 and 14,611 in the case of 2-D analysis and 241,920 and 57,827 in the case
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Figure 8. Computed mean streamline for 2D analysis.
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Figure 9. Computed mean streamline for 3D analysis.
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Figure 10. Comparison with computed and experimental results for the
length of re-attachement of streamline.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:575-589



PARALLEL FINITE ELEMENT SIMULATION 585

Figure 11. Computed streamline at ¢ = 120.

of 3-D analysis, respectively. Figure 7 shows the finite element mesh around a semicircular
hill for the 3-D analysis. The finite element mesh for the 2-D analysis is the same as the
3-D mesh for the vertical x—z section shown in Figure 7. The time increment is assumed to
be Ar=0.001. Figures 8 and 9 show the 2-D and 3-D results of mean streamline versus the
degree of air-density stratification K (or the Froude Number Fr). From these results, the effect
of air-density stratification can be clearly seen. The length of re-attachment of the streamline
becomes shorter with the increase in the degree of air-density stratification. Figure 10 shows
the comparison of the length of re-attachment versus the degree of air-density stratification
between numerical and experimental results [14]. The numerical result obtained by the 3-D
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Figure 12. Speed-up ratio versus number of processors.

Figure 13. Boundary condition for orographic windflow and rainfall for Miyake Island.

analysis is in good agreement with the experimental results. Figure 11 shows the computed
streamline at =120 in case of K =0.02 (Fr=100) and K =2.5 (Fr=0.76). From this figure,
it can be seen that the three-dimensional effects are stronger when the degree of air density
stratification is low. This is the reason why the numerical results obtained by the 2-D analysis
are not in agreement with the experimental results. Figure 12 shows the speed-up ratio versus
the number of processors in the case of 3-D analysis. It can be seen that the super-linear
parallel performance was obtained by the effect of cache memory.
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Figure 14. Computed streamline which starts from the elevation level 250 m at t=3h.

Figure 15. Computed streamline at t=3h.

v

*-.

Figure 16. Computed cloud water content at # =3h.

The present method was applied to the actual mountain area shown in Figure 13. The
vertical length of computational domain was assumed to be 5km, where the height of Miyake
Island is about 800m. The Reynolds number and the time increment are R,=2000 and
At=0.5s, respectively. Figure 14 shows the computed streamline, which starts from the
elevation level 250m at time ¢ =3h. From this figure, it can be seen that the twin vortices
are located behind the mountain. Figures 15-17 show the computed streamline, cloud and
rainwater content respectively, at the central section of the island at time #=3h. From these
figures, it can be seen that the cloud water and rainwater generated by the ascending wind
flow due to the slope of the mountain are transposed to the downstream side. Figure 18 shows
the time history of the rain intensity at points A, B, C and D shown in Figure 17. From this
figure, it is seen that strong rains occur behind the mountain and the rain intensity at points
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Figure 17. Computed rainwater content at t=3h.

—_
W

—_
(=)

W

Rainfall Intensity (mm/h)

=)

Time (h)

Figure 18. Computed rain intensity at points A, B, C and D.

C and D fluctuates due to the advection of cloud and rainwater. The computational results
are in agreement with the actual rain phenomena, qualitatively.

7. CONCLUSIONS

A simulation method based on parallel finite element method for the analysis of orographic
wind flow and rainfall has been presented. The Navier—Stokes equation, based on Boussinesq
approximation, and the Kessler model were employed for the governing equations. The sta-
bilized finite element method based on SUPG/PSPG method was employed. The parallel
implementation based on domain decomposition and MPI was designed for the use of PC
cluster parallel computer. The automatic mesh generation method using GIS data was also
developed to generate a finite element mesh that accurately expresses the details of geographi-
cal features. The computed results obtained by the present method were in agreement with the
experimental results and actual phenomena, qualitatively. Good parallel performance was ob-
tained using a PC cluster. The verification of the method of rainfall analysis will be presented
in a future work.
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